
January, 2004

Advisor Answers

Getting a directory listing

VFP 8/7/6

Q: I'm getting different results running the DIR command from within
VFP and from a command window. When I use VFP's DIR command, I

get a list of filenames in two or more columns. When I issue:

! DIR *.zip > zipfiles.txt

the format for the files in the resulting listing looks like this:

RF001 ZIP 14056982 16/09/03 22:19

When I open a command prompt from Windows and issue the same
command:

DIR *.zip > zipfiles.txt

the listing for a file looks like this:

09/16/2003 10:19 PM 14,056,982 RF001.zip

I need to get an accurate list of filenames that I can put into a cursor
for processing. Some of the directories involved contain more than

100,000 files, so I can't use ADIR().

What's causing the difference in the results from the DIR command? Is

there a better way to gather information about files in a directory that
contains many files?

–Erez Miller (via Advisor.COM)

A: Let me start with your first question. Why are you getting different

results from the three different ways of listing the directory contents?
The VFP DIR command (actually short for DIRECTORY) is a synonym

for the LIST FILES command. Both are built into the FoxPro engine and

produce output in a format similar to the "wide" format you get when
passing the /W switch to the DOS DIR command. There's no way to

control the output format.

You would expect RUN DIR (or the identical ! DIR) to produce the

same results as issuing DIR from a command prompt. A little

exploration turns up the /N switch for the DIR command, which is

described as using the "New long list format where filenames are on
the right." That's the format you're seeing at the command prompt,

while RUN DIR is using the older traditional format. You can see the
older format at the command prompt by issuing the command like

this:

DIR /-N *.zip > zipfiles.txt

In addition to the difference in the order of the columns, the older
format doesn't support long file names. Files are shown using their

short names.

However, I suspect you actually prefer the long format. Unfortunately,

I can't get the /N switch to work via the RUN command, like this:

! DIR /N *.zip > zipfiles.txt

The problem is that there are actually two different versions of the

command processor, COMMAND.COM and CMD.EXE. COMMAND.COM,
which is what VFP normally uses when you issue the RUN command,

doesn't offer the /N switch. You have a couple of options if you want
to use the DOS DIR command.

The first is to change FOXRUN.PIF, the file that controls the FoxPro
RUN command. Find the file in the VFP home directory, right-click and

choose Properties. On the Program page, change the Cmd line entry to
CMD.EXE.

The second alternative is to call on CMD.EXE directly with code like:

! cmd.exe /C DIR /n *.zip >zipfiles.txt

However, neither of these solutions work in Windows 9x. In addition,
both solutions suffer from the problem using RUN generally has;

there's an ugly DOS window displayed along the way. Fortunately,

there are a number of other solutions to the problem.

As you note, ADIR() isn't a choice for you because of the number of

files you're dealing with. Arrays are limited to 65,000 total elements;
with 5 columns per item, that means it works only for directories with

13,000 files or fewer. (This problem will go away in VFP 9, where the
limit on arrays will be eliminated.)

One option is to use a rather obscure VFP command. (In fact, so
obscure that I'd forgotten about it until Christof reminded me.)

SYS(2000) lets you go through the files in a directory one by one. The

syntax is:

cFileName = SYS(2000, cFileSpec [, 1])

The first time you call it, omit the third parameter and it returns the
first matching file. On subsequent calls, pass the third parameter and

it returns the next matching file. Here's a function (FindFiles2000.PRG
on this month's Professional Resource CD) that fills a cursor with the

specified files. You pass the directory and file spec, and the function
returns the number of files found.

* Find all files in a specified directory
* that match a filespec, using SYS(2000).
LPARAMETERS cFolder, cFileSpec

LOCAL cSearchName, cFile

CREATE CURSOR FileList (mFileName M)

cSearchName = FORCEPATH(cFileSpec, cFolder)

cFile = SYS(2000,cSearchName)

DO WHILE NOT EMPTY(cFile)
 * Extract file name
 INSERT INTO FileList VALUES (m.cFile)

 cFile = SYS(2000,cSearchName,1)
ENDDO
nReturn = RECCOUNT("FileList")

RETURN nReturn

In addition, there are two possible approaches using tools provided by
Windows. The first is the Windows Scripting Host, and the second is to

go right to the Windows API. I'll show you both solutions and then

explain why I recommend the API version, if you're going outside the
native language.

The FileSystemObject of the Windows Scripting Host (WSH) gives you
access to the drives, folders and files on a computer. While it doesn't

offer a way to search for files matching a particular pattern, you can
get a list of all the files in a folder and then use VFP's LIKE() function

to check whether they match the desired filespec. Here's my code to
populate a cursor with the names of all the files in a folder that match

a specified pattern. It returns the number of files found; if the
specified directory doesn't exist (or something else goes wrong), it

returns –1. (It uses VFP 8's TRY-CATCH construct to handle any

problems. To use it in VFP 7 or earlier, you'll need to add some error

handling.) You'll find it on this month's Professional Resource CD as
FindFilesWSH.PRG:

* Find all files in a specified directory
* that match a filespec, using Scripting.
LPARAMETERS cFolder, cFileSpec

LOCAL oFSO as Scripting.FileSystemObject
LOCAL oFolder AS Scripting.Folder
LOCAL oFiles as Scripting.Files
LOCAL oFile as Scripting.File
LOCAL nReturn

CREATE CURSOR FileList (mFileName M)
TRY
 oFSO = CREATEOBJECT("Scripting.FileSystemObject")
 oFolder = oFSO.GetFolder(cFolder)
 oFiles = oFolder.Files
 FOR EACH oFile IN oFiles
 IF LIKE(cFileSpec, oFile.Name)
 * Found one. Add it.
 * If full path is needed, use oFile.Path instead
 INSERT INTO FileList VALUES (oFile.Name)
 ENDIF
 ENDFOR
 nReturn = RECCOUNT("FileList")
CATCH
 nReturn = -1
ENDTRY

RETURN nReturn

The Windows API approach to looking inside a directory is like the one
used by SYS(2000). You ask for the first file matching a pattern and

then loop through the rest of the matching files. Two API functions are
needed, FindFirstFile and FindNextFile. Both functions fill a string

parameter passed by reference with a great deal of information about
the file. The code here simply parses out the filename. Here's the API

version of the function (on this month's PRD as FindFilesAPI.PRG):

* Find all files in a specified directory
* that match a filespec, using the Win API.
LPARAMETERS cFolder, cFileSpec

#DEFINE FIND_DATA_SIZE 318
#DEFINE START_NAME 45
#DEFINE MAX_PATH_LEN 260

DECLARE INTEGER FindFirstFile IN kernel32;
 STRING lpFileName,;
 STRING @ lpFindFileData

DECLARE INTEGER FindNextFile IN kernel32;
 INTEGER hFindFile,;
 STRING @ lpFindFileData

LOCAL cFileData, hFile, lReturn, cSearchName
LOCAL cFile

CREATE CURSOR FileList (mFileName M)

cSearchName = FORCEPATH(cFileSpec, cFolder)
cFileData = SPACE(FIND_DATA_SIZE)

hFile = FindFirstFile(cSearchName, @cFileData)
hFirst = hFile
DO WHILE hFile > 0
 * Extract file name
 cFile = SUBSTR(cFileData, START_NAME, ;
 MAX_PATH_LEN) + CHR(0)
 cFile = LEFT(cFile, AT(CHR(0), cFile)-1)
 INSERT INTO FileList VALUES (m.cFile)

 hFile = FindNextFile(hFirst, @cFileData)
ENDDO
nReturn = RECCOUNT("FileList")

RETURN nReturn

There are a couple of differences between the two versions. First, the
API version returns 0 if the directory doesn't exist rather than –1

(though you could change that by testing for hFile=-1 before the DO
WHILE). More importantly, the API version sees hidden files, which the

WSH and SYS(2000) versions do not.

Those differences aside, there are two important reasons why I

recommend the API version. The first is that the WSH may not be
available on every computer that runs your application. Because

malicious code can use it, some system administrators don't allow the
WSH on their networks.

The second reason is even more compelling. The API version is much,
much faster. I tested the speed of both versions by looking for files in

my Windows SYSTEM32 directory (where there are about 2300 files).
The API version ran 20 to 30 times faster. That said, the SYS(2000)

version was slightly faster than the API version, so is generally your

best choice, unless you need to include hidden files, or have to
preserve the case of file names.

–Tamar

